Простой усилитель на микросхеме LM386

Высококачественный аудио усилитель

Связанные материалы

TDA8920…
TDA8920 — высококачественный усилитель мощности класса «D» с очень низким уровнем рассеяния….

Основы конструирования радиоэлектронных приборов. Аксенова И.К., Мельников А.А…
Аксенова И.К., Мельников А.А. Основы конструирования радиоэлектронных приборов Издательство «Высшая…

Микрофонный усилитель на LM386 для рации Motorola P080 или Скайпа…
При всей кажущейся простоте вопроса проблема существует — в ряде случаев чувствительности штатного…

Большая статья о маленьком усилителе на микросхеме TDA2822M…
Старый друг лучше новых двух! Пословица Интегральная микросхема TDA2822M благодаря небольшому числу…

Простой усилитель на микросхеме LM386Моделирование линейного блока питания в программе «PSU Designer II»…
Многие радиолюбители используют трансформаторы в качестве основы блоков питания, в том числе для…

Простой усилитель на микросхеме LM386Усилитель на К174УН7 (A210K, ТBА810AS, LA4420) с уменьшеным уровнем искажений…
Да, это старая-добрая К174УН7 (аналог A210K ТBА810AS, LA4420 ), но на ней при небольшой мощности 4…

А.Л.Булычев, В.И.Галкин. Справочник по электровакуумным приборам…
А.Л.Булычев, В.И.Галкин. Справочник по электровакуумным приборам. Беларусь, 1982 Содержит основные…

Справочник по электрическим конденсаторам. Дьяконов М.Н., Карабанов В.И., Присняков В.И и др….
Справочник по электрическим конденсаторам. Дьяконов М.Н., Карабанов В.И., Присняков В.И и др….

Простой усилитель на микросхеме LM386TDA2003, BA5415A и BA5417. Три усилителя для стереотелефонов…
В настоящем проекте рассмотрены усилители для головных телефонов на массовых микросхемах, таких как…

Опыт переделки пассивной акустики в активную. «Элегия 102» + TDA2030A…
Сказ про Ивана-самоделыча, гусли-самогуды эмпэтришные и колоды громкоговорящия Жил да был…

Полный усилитель на микросхемах. Часть 1. Усилитель мощности звуковой частоты на TDA2006, TDA2030, TDA2040, TDA2050, LM1875…
Не мечтай, действуй! В настоящем проекте мы построим простой усилитель мощности звуковой частоты на…

Простой усилитель на микросхеме LM386Полный усилитель на микросхемах. Часть 5-4. Токовая помпа Хоуленда (подписка на платы завершена)…
Не мечтай, действуй! Howland Current Pump. Особенность построения УМЗЧ настоящего проекта…

Схемы включения усилителя LM386

На рисунке ниже показано типовое включение микросхемы LM386 из datasheet. В данном случае коэффициент усиления схемы ограничено до 20, поскольку к выводам 1 и 8 не подключены внешние элементы.

Простой усилитель на микросхеме LM386

Данный коэффициент усиления (20) обеспечивается внутренними резисторами обратной связи на 1,35 кОм (к выводам 8 и 1) и 15 кОм (к выводам 1 и 5). Параллельное подключение внешних резисторов к данным резисторам приводит к изменению коэффициента усиления.

Формула расчета коэффициента усиления

Без каких-либо внешних компонентов усиление составляет 20:

А = 2 × 15000 / (150 + 1350) = 20

Конденсатор, подключенный между контактами 1-8 микросхемы, позволяет игнорировать резистор на 1,35 кОм, и следовательно коэффициент усиления будет:

А = 2 × 15000/150 = 200

Выход микросхемы подключен к громкоговорителю с помощью конденсаторного фильтра, который обычно используется в линейных усилителях. Переменный резистор на входе используется для настройки желаемого уровня громкости.

Вторая схема показывает, как можно повысить коэффициент усиления выше базовой установки (20) вплоть до 200 путем добавления конденсатора к контактам 1 и 8 микросхемы. Емкость конденсатора не должна превышать 10 мкФ.

Простой усилитель на микросхеме LM386

Подбор коэффициента усиления в диапазоне от 20 до 200 может быть осуществлен, в том числе и с применением переменного резистора на 4,7 кОм, подключенного последовательно с конденсатором.

Избыток смещения может быть уменьшен путем соединения неиспользуемого вывода резистора с землей. Однако все вопросы смещения отпадают если активный вход соединен через конденсатор.

В варианте с коэффициентом усиления 200, необходимо соединить вывод 7 с помощью конденсатора емкостью 0,1мкФ с минусом питания для поддержания стабильной работы и предотвращения нелинейных искажений.

Простой, но интересный усилитель басов может быть получен путем подключения цепи из резистора и конденсатора к выводам 1 и 5

Простой усилитель на микросхеме LM386

Скачать datasheet LM386 (211,2 Kb, скачано: 3 639)

Статистика

Собираем усилитель 1W на LM386.

Простой усилитель на микросхеме LM386 Собираем усилитель 1W на LM386

В статье рассмотрен проект простого компактного и легкого для повторения усилителя на микросхеме LM386. Питание схемы осуществляется от однополярного источника питания, напряжение которого может лежать в пределах от 4 до 12 Вольт. Низкое потребление дает возможность применения данной схемы для конструирования аудио-устройств с питанием от батареек или малогабаритных аккумуляторов. Ток режима покоя составляет всего 4 мА.

При выборе LM386 внимательно смотрите с каким она индексом, микросхемы LM386N-1, -3, LM386M-1, LM386MM-1 имеют диапазон питающего напряжения 4. 12 Вольт, а у LM386N-4 питание может быть чуть выше: от 5 до 18 Вольт. Соответственно и мощность на выходе у них будет различна. Для справки смотрите таблицу электрических характеристик ниже:

Принципиальная схема усилителя 1W на микросхеме LM386 показана ниже:

Исходник печатной платы нам достался вот такой:

По этому рисунку была нарисована печатная плата в программе Sprint Layout. Расположение элементов на плате осталось неизменным, единственное отличие заключается в том, что мы не стали располагать на плате выключатель. При необходимости его всегда можно поставить в разрыв питающего провода, а место на плате немного экономится. Размер печатки получился 35 х 38 мм, фольгированный текстолит односторонний. Вид LAY формата платы следующий:

Фото-вид LAY формата:

Вторая версия печатной платы усилителя на LM386 LAY6 формата (размер 23 х 45 мм):

Простой усилитель на микросхеме LM386 Amp_LM386 ver2_LAY

Простой усилитель на микросхеме LM386 Amp_LM386 ver2_LAY_foto

Разговор пойдёт об очень распространённой интегральной схеме (ИС) звукового усилителя мощности LM386, производимой компанией National Semiconductor (сейчас полностью входит в состав Texas Instruments) .

Действительно, напряжение питания микросхемы может быть в пределах 4…12 В, а потребляемый ток покоя составляет всего 4 мА, что является идеальным для большинства аудиопроектов, получающих питание от батарей. Усилитель развивает выходную мощность 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 8 Ом. Если добавить, что Кус. этой интегральной МС может быть легко выбран от 20 до 200 с помощью двух внешних элементов, а её выходное напряжение автоматически устанавливается равным половине напряжения питания, то станет ясно, почему в течение многих лет эта микросхема сохраняет популярность.

Заголовок проекта отражает сказанное – как микросхема, так и наборы на её основе чрезвычайно востребованы радиолюбителями, в этом смысле аудиоусилитель LM386 действительно чемпион. См., например,

Предлагаю ознакомиться с возможностями массовой микросхемы LM386 и предложить мои варианты её применения.

Какой транзистор выбрать

При использовании TIP31 и TIP32 транзисторы моего прототипа работали без теплоотводов в диапазоне напряжений питания от 9 В до 21 В. Эти комплементарные транзисторы в корпусах TO-220 при естественном воздушном охлаждении допускают рассеяние мощности до 2 Вт, в то время как в моей схеме при нагрузке 8 Ом и питании 21 В на них выделяется максимум 1.3 В. Технически тут все нормально, однако транзисторы настолько горячи, что до них невозможно дотронуться. Поэтому, все же было бы неплохо воспользоваться небольшими навесными радиаторами с пружинными зажимами. При 8-омном динамике и напряжениях питания менее 18 В теплоотводы не нужны. Максимальная мощность, отдаваемая моим прототипом, аппроксимируется следующим выражением, полученным на основании эмпирических данных:

Простой усилитель на микросхеме LM386

Используя эту формулу, вы можете определить, что мой прототип при питании напряжением 9 В отдает в нагрузку 8 Ом респектабельные 350 мВт. Это совсем немало для небольших радио проектов. На другом полюсе – при напряжении питания 21 В и нагрузке 8 Ом – формула предсказывает мощность 2.5 Вт, и это ровно то, что я измерил в точке начала ограничения. В этом тесте я использовал синусоидальный сигнал частотой 1 кГц.

Как ни странно, похоже, что своей устойчивостью схема обязана низкой граничной частоте силовых транзисторов. Я пробовал использовать более быстрые транзисторы (44H11 и 45H11), но получил возбуждение вблизи 700 кГц, несмотря на то, что SPICE моделирование предсказывало противоположное! Подозреваю, что более высокочастотные транзисторы просто не успевали внести дополнительный фазовый сдвиг вблизи частоты единичного усиления ОУ LM358 (1 МГц). (Это не более чем мое предположение). Выбор намного более быстрых транзисторов, таких как 2N2219 и 2N2905, возвращал схеме устойчивость, скорее всего потому, что присущий LM358 спад уже наступал к тому времени, когда транзисторы начинали сдвигать фазу. В этом случае результаты находились в согласии со SPICE. SPICE предупреждает, что совсем медленные транзисторы, такие как старинные 2N3055, будут еще более неустойчивыми. Одним словом, нужно экспериментировать!

Популярные статьи  Выжимаем последние соки из батарейки

При напряжении питания Vcc ниже 12 В рассеиваемая транзистором мощность становится меньше 350 мВт, и многие малосигнальные приборы будут хорошо работать без теплоотвода.

Стабильный УНЧ на микросхеме LM386 (1W)

Я использую компьютерную гарнитуру — два динамика по 32 Ома включённые последовательно. Итого 64 Ома по постоянке. Для любого ОУ 4 ома что КЗ я так ни одну LM с жог Ну если имелось в виду то это не оу ,а унч маломощный и он прекрасно работает и на 4 ома,хотя в даташите везде пишется 8 ом,у меня примерно из 30шт примененных в разных устройствах на одна не вылетела. Дело в том, что LM это хороший операционник с крутым усилением и малым уровнем шума, а LM в качестве предварительного каскада — крайне нецелесообразно, и неудачное решение. К тому же используется я с подъёмом коэф. Дело в том, что LM это хороший операционник с крутым усилением и малым уровнем шума, а LM в качестве предварительного каскада — крайне нецелесообразно и неудачное решение Так ради бога. Берём вашу схему, выбрасываем из неё LM

С какими проблемами я столкнулся

В этой схеме много усиления собрано в небольшом объеме и, что еще хуже, есть много тока, идущего через выходной каскад. Операционные усилители довольно хорошо подавляют обратную связь, создаваемую помехами по шинам питания и земли, но, тем не менее, эта обратная связь может создавать проблемы устойчивости. Провода от источника питания подключайте к схеме вблизи выходных транзисторов. Провод «земли» припаяйте возле точки соединения трех конденсаторов 10 мкФ и резистора 330 кОм

Обратите также внимание на входной фильтр 1 кОм/10 мкФ. Мощности, потребляемой усилителем, достаточно для небольшого проседания Vcc, и небольшая часть возникающей в связи с этим помехи, проникая на вход, приводит к генерации или, в моем случае, к загадочному падению входного импеданса

Небольшой RC фильтр эту обратную связь устраняет. Снизить усиление схемы вы можете, уменьшив сопротивления резисторов 33 кОм, или ограничившись только одним входным каскадом. Дополнительное усиление можно будет получить с помощью внешней схемы.

Помимо этого, вы можете столкнуться с проблемами устойчивости, связанными с выбором ОУ и транзисторов, о которых говорилось выше, поэтому было бы неплохо воспользоваться осциллографом и убедиться, что усилитель работает правильно.

Стабилизированный источник питания не является абсолютно необходимым для этой схемы, но, как минимум, нужно использовать конденсатор очень большой емкости, такой, как показанный на схеме конденсатор 2200 мкФ. Трехвыводной стабилизатор обеспечит некоторую дополнительную степень защиты транзисторов в случае короткого замыкания выхода на землю.

↑ Другие варианты применения микросхемы LM386

↑ Усилитель на LM386 с гнездом для подключения наушников

На рис. 7 показан усилитель с возможностью подключения головных телефонов. На схеме входное напряжение от источника аудиосигнала подаётся через конденсатор С1, устраняющий постоянную составляющую на регулятор громкости R1.

Простой усилитель на микросхеме LM386

Рис. 7. Усилитель с гнездом для подключения наушников

Второй конденсатор (С2), включённый между средним выводом R1 и неинвертирующим входом, в принципе не нужен, но такое схемотехническое решение устраняет шорохи при возможном плохом качестве переменного резистора, а также уменьшает смещение половинного напряжения на выходе усилителя.

Гнездо для подключения наушников включено через развязывающий конденсатор С5 таким образом, что при отсутствии штекера наушников подключён динамик ВА1, а при включении штекера – динамик отключается.

Назначение остальных элементов усилителя было рассмотрено выше. Коэффициент усиления по напряжению минимален (Ku=20).

↑ Переговорное устройство на LM386

Взяв за основу усилитель с максимальным коэффициентом усиления (рис. 2), можно получить простое переговорное устройство. Как видно из схемы, представленной на рис. 8, в неё добавлен выключатель питания и переключатель «Приём – передача», обеспечивающий попеременную работу динамических головок ВА1 и ВА2 в качестве микрофона или громкоговорителя.

Простой усилитель на микросхеме LM386

Рис. 8. Переговорное устройство

Устройство позволяет организовать проводную связь между двумя абонентами. Дальность связи достигает нескольких сотен метров.

Область применения этой конструкции: связь между двумя абонентами, игры и т. п. Усилитель с динамической головкой ВА1 располагается на основном пункте связи, а другая динамическая головка – на удалённом пункте связи. Соединение основного и удалённого пунктов связи выполняют многожильным телефонным двухпроводным кабелем. Конструкция питается от батареи напряжением 9 В типа «Крона».

↑ Генератор синусоидальных сигналов с малыми искажениями на LM386

Этот же усилитель без больших затрат превращается в генератор синусоидальных сигналов с малым коэффициентом гармоник. Схема генератора с мостом Вина показана на рис. 9.

Простой усилитель на микросхеме LM386

Рис. 9. Генератор синусоидальных сигналов с малыми искажениями

Напомним, что частота генератора определяется выражением:

fo=½Π√(R1R2C1C2)

Чаще всего выбирают R1=R2 и C1=C2, при этом выражение упрощается:

fo=½ΠR1C1

Вторым требованием является то, что коэффициент отрицательной обратной связи усилителя должен быть равен точно 1/3 . При указанных условиях в схеме возникают незатухающие колебания. Если этот коэффициент меньше 1/3, амплитуда колебаний будет быстро увеличиваться со временем, пока выходное напряжение не превратится в меандр.

Если коэффициент отрицательной обратной связи более 1/3, амплитуда колебаний через некоторое время будет стремиться к нулю. Ясно, что установить идеальное значение коэффициента можно, если применить систему автоматической регулировки амплитуды.

Для этого предусмотрена цепь отрицательной обратной связи R3, HL1, которая так воздействует на коэффициент усиления, чтобы амплитуда колебаний стабилизировалась при весьма малых нелинейных искажениях (порядка 0,05%).

Если выходное напряжение генератора по каким-либо причинам увеличивается, увеличится и ток через R3, а также напряжение на нелинейном элементе – лампе накаливания HL1. Нить лампы накаливания разогреется, и её сопротивление увеличится, что приведёт к уменьшению глубины отрицательной обратной связи и уменьшению напряжения на выходе генератора. При уменьшении выходного напряжения генератора процессы происходят в обратном направлении, в результате обеспечивается автоматическая стабилизация коэффициента усиления.

При указанных на принципиальной схеме значениях элементов частота генерируемых колебаний составляет 1 кГц, а амплитуда – около 2 В эфф.

↑ Генератор прямоугольных импульсов на LM386

Схема, показанная на рис. 10, представляет собой генератор сигналов прямоугольной формы.

Простой усилитель на микросхеме LM386

Рис. 10. Генератор прямоугольных импульсов

Усилитель DA1 играет роль компаратора. Положительная обратная связь реализуется с помощью делителя R1, R2, подключённого к неинвертирующему входу усилителя. Коэффициент обратной связи Kос=R2/(R1+R2). В состав отрицательной обратной связи включена интегрирующая цепь R3, C1.

Период колебаний генератора для симметричных сигналов прямоугольной формы составляет:

T=2R3C1ln[(1+Kос)/(1-Kос)]

При Кос=0,462 формула упрощается:

Т=2R3C1, и частота f=½R3С1

Максимальная частота генерируемых схемой колебаний ограничена скоростью нарастания выходного напряжения усилителя DA1.

↑ Усилительные схемы на ИС LM386

↑ Усилитель с коэффициентом усиления 200

Принципиальная схема усилителя с коэффициентом усиления Ku=200 (46 дБ), изображена на рис. 2 а, б. На первом из них (рис. 2 а) показана функциональная схема ИС LM386, позволяющая лучше понять работу усилителя, а на втором (рис. 2 б) микросхема изображена в виде «чёрного ящика», по ней легче выполнять разводку печатной платы и проверку правильности установки смонтированных на ней элементов.

Простой усилитель на микросхеме LM386

Рис. 2. Усилитель с коэффициентом усиления 200

Резистор R1 служит регулятором громкости, конденсатор C1 является фильтрующим

Конденсатор C2 шунтирует выводы 1 и 8 микросхемы DA1 по переменному току, благодаря чему достигается максимальный коэффициент усиления; конденсатор C4 служит для развязки по питанию, что важно в условиях работы с разряженной батареей, когда её внутреннее сопротивление увеличивается

Цепочка C3, R2 предназначена для повышения стабильности при работе усилителя на ёмкостную нагрузку. Иногда её установкой пренебрегают, что не является преступлением, но нежелательно, поскольку может преподнести «сюрприз» в самый неподходящий момент. Нагрузка ВА1 подключена к выходу ИС через разделительный конденсатор С5.

Популярные статьи  Простая беседка за 1 день

↑ Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

На рис. 3 показана схема с минимальным количеством элементов, имеющая коэффициент усиления по напряжению Ku=20 (26 дБ). Здесь выводы 1 и 8 микросхемы оставлены свободными, исключён из схемы фильтрующий конденсатор, подключаемый к выводу 7. В результате весь усилитель содержит всего семь элементов, включая и динамическую головку ВА1.

Простой усилитель на микросхеме LM386

Рис. 3. Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

↑ Усилитель с коэффициентом усиления 50

Ещё один вариант схемы приведён на рис. 4. При значениях элементов, показанных на этой схеме, обеспечивается усиление по напряжению Ku=50 (34 дБ).

Простой усилитель на микросхеме LM386

Рис. 4. Усилитель с коэффициентом усиления 50

По сравнению с предыдущей схемой добавлено три элемента: два конденсатора и резистор. В табл. 2 приведены значения резистора R2 для получения других коэффициентов усиления по напряжению.

Простой усилитель на микросхеме LM386

↑ Усилитель с подъёмом низких частот

Примером усилителя, в котором производится формирование требуемой частотной характеристики, является схема, показанная на рис. 5. Здесь усиление по напряжению изменено шунтированием внутреннего резистора обратной связи (R6), доступного через выводы 1 и 5 микросхемы LM386. Шунтирование цепочкой R2, C2 позволяет получить подъем частотной характеристики около 6 дБ на частоте 85 Гц, что может быть использовано для улучшения звучания малогабаритных акустических систем.

Коэффициент усиления по напряжению усилителя на частоте 1 кГц составляет Ku=10 (20 дБ).

Простой усилитель на микросхеме LM386

Рис. 5. Усилитель с подъёмом низких частот

↑ Принципиальная схема усилителя для АМ радиоприёмника

Ещё один пример применения ИС в качестве усилителя для малогабаритного АМ радиоприёмника показан на 6. В этой схеме радиовещательный сигнал после детектора поступает через конденсатор С1, устраняющий передачу постоянной составляющей на регулятор громкости R1.

Простой усилитель на микросхеме LM386

Рис. 6. Принципиальная схема усилителя для АМ радиоприёмника

Сигнал со среднего вывода R1 поступает на неинвертирующий вход микросхемы DA1 через развязывающую цепочку – фильтр нижних частот R2, C2, устраняющий попадание остатков высокочастотного напряжения. Для этих же целей на выходе усилителя включена цепочка L1, C7. Дело в том, что усилитель на микросхеме DA1 довольно широкополосный (полоса пропускания составляет около 300 кГц) и без принятия подобных мер служит отличным источником радиоизлучений в длинноволновом и средневолновом диапазонах волн.

Резистор R3, включённый параллельно катушке L1, служит для устранения нежелательных резонансов в звуковом диапазоне частот. Коэффициент усиления по напряжению усилителя максимален (Ku=200).

Наряду с оксидным конденсатором С6 включён керамический конденсатор С5, используемый для высокочастотной развязки по цепи источника питания; не забыт в этой схеме и фильтрующий конденсатор, подключаемый к выводу 7 микросхемы (С3).

Катушка L1 представляет собой ферритовую бусинку с пропущенным проводом внутри (Ferrite Bead).

Усилитель LM386

LM386 довольно универсальный чип. Необходимы только пара резисторов и конденсаторов, чтобы сделать простой аудио усилитель. Чип имеет функции контроля коэффициента усиления и усиления НЧ, а также может быть превращен в автогенератор, способный выводить синусоиды или прямоугольные волны.

LM386 представляет собой тип операционного усилителя (ОУ). Операционный усилитель принимает входной потенциал (напряжение) и формирует выходной потенциал, который в десятки, сотни или даже в тысячи раз превосходит входной потенциал.

В этой схеме LM386 принимает входной аудиосигнал и увеличивает его от 20 до 200 раз. Это усиление не что иное, как коэффициент усиления по напряжению.

Усиление и громкость

После того, как вы соберете этот усилитель и поиграетесь с регуляторами громкости и усиления, вы заметите, что оба влияют на увеличение или уменьшение интенсивности звука, выходящего из колонки. Так в чем же разница?

Изменение коэффициента усиления влияет на усиление входного сигнала. Это характеристика усилителя. Громкость позволяет регулировать громкость звука в диапазоне усиления (коэффициента усиления).

Вывод Gain устанавливает диапазон возможных уровней громкости. Например, если наш коэффициента усиления составляет 20, то диапазон громкости будет от 0 до 20. Если же коэффициента усиления 200, громкость будет от 0 до 200.

Операционный усилитель LM386 имеет 8 контактов, как показано на рисунке ниже:

Простой усилитель на микросхеме LM386

Основные выводы микросхемы: выводы 2 и 3 – вход, вывод 5 — положительный выход. Регулирование усиления может быть достигнуто путем подключения к контактам 1 и 8 конденсатора на 10 мкФ, при этом коэффициент усиления будет 200. Если же контакты 1 и 8 оставить свободными, то усиление будет 20. Так же коэффициент усиления может быть настроен на любое значение в диапазоне от 20 до 200 путем подключения потенциометра последовательно с конденсатором.

Есть три разновидности ОУ LM386, каждый имеет различные показатели выходной мощности:

  • LM386N-1: 0,325 Вт
  • LM386N-3: 0,700 Вт
  • LM386N-4: 1,00 Вт

Внутренняя структура микросхемы LM386:

Простой усилитель на микросхеме LM386

Скачать datasheet на LM386 (unknown, скачано: 292)

Теперь, когда у нас есть представление о LM386, давайте соберем усилитель. Для сравнения, я покажу вам, как сначала сделать простой усилитель, так чтобы вы смогли сравнить его с более качественным усилителем звука, который мы соберем позже.

Простой усилитель на микросхеме LM386

В приведенной схеме источник питания, звуковой входной сигнал, и выходной аудиосигнал имеют общую шину. Это в свою очередь создает помехи в выходном сигнале. Чтобы не допустить этого, мы можем подключить минус питания, вход и выход прямо к выводу 4 LM386:

Простой усилитель на микросхеме LM386

В результате этого звучание должно быть значительно лучше, по сравнению с предыдущей схемой, но вы, вероятно, заметили некоторый шум, треск.

Чтобы это исправить, нам необходимо добавить разделительные конденсаторы. Эти конденсаторы позволяют изолировать схему усилителя от помех, вызванных колебаниями питания и шума от входного сигнала.

Используя конденсаторы с большой емкостью, мы получим НЧ фильтр, а используя конденсаторы с малой емкостью отфильтруем высокочастотный шум.

Это был минимум который необходим для строительства усилителя на LM386. Теперь пришло время построить более качественную версию с возможностью изменения коэффициента усиления. Добавил несколько элементов в схему, это позволит нам получить более качественное звучание:

  • разделительный конденсатор 470 пФ между положительным входным сигналом и землей.
  • конденсаторы 100 мкФ и 0,1 мкФ между положительными и отрицательными шинами питания. 100 мкФ конденсатор будет фильтровать низкочастотный шум, в то время как 0,1 мкФ конденсатор будет фильтровать высокочастотный шум.
  • конденсатор 0,1 мкФ между контактами 4 и 6 для дополнительной развязки источника питания микросхемы.
  • резистор 10к и конденсатор 10 мкФ подключены последовательно к выводу 7 и минусом питания.

На рисунке ниже показано как это все соединить:

Простой усилитель на микросхеме LM386

Следует обратить внимание для того, чтобы иметь чистый звук, необходимо все соединения делать как можно короче и ближе к выводам микросхемы. Особенностью LM386 является возможность добавить регулирование басов

Все, что вам нужно сделать, это подключить конденсатор емкостью 0,033 мкФ и потенциометр 10K Ом последовательно между контактами 1 и 5:

Особенностью LM386 является возможность добавить регулирование басов. Все, что вам нужно сделать, это подключить конденсатор емкостью 0,033 мкФ и потенциометр 10K Ом последовательно между контактами 1 и 5:

Простой усилитель на микросхеме LM386

LM386 Часть 2

Ещё раз о покупке электронных комплектующих на Aliexpress. На этот раз LM386 в корпусе DIP8. Список сокращений: Кг (THD) — коэффициент гармоник ООС — отрицательная обратная связь ЗК — звуковая карта PC — персональный компьютер (англоязычное сокращение) 1. Покупка. После положительных результатов с модулями LM386 захотелось продолжить эксперименты. Были куплены 10 шт. LM386 в корпусе DIP8.

Простой усилитель на микросхеме LM386

Микросхемы приехали. Вскоре состоялась проверка. Схема стенда — проще простого: всего-то надо подключить питание к выводам микросхемы и померить напряжение на выходе (вывод 5).

Простой усилитель на микросхеме LM386

Если микросхема исправна, на 5-м выводе присутствует напряжение около половины питающего. Т.к. проверка выполнялась от 4В источника, на выходе ожидалось около 2В.

И тут сюрпрайз: +0,6В. Естественно, в стенде побывали все 10 штук микросхем. У всех — одинаковые симптомы. Сделал фото, открыл спор, через время получил обратно свой доллар.

Отзыв на али:

Дополнительная информация

Простой усилитель на микросхеме LM386

2. Некоторые замечания о бракованных LM386.

Популярные статьи  Простая система автоматического полива

Упрощённая схема LM386:

Простой усилитель на микросхеме LM386

2.1. Резистор ООС между выводами 1 и 5 легко проверяется омметром: вместо 15 кОм было значение около 20 кОм.

2.2. Обозначение на корпусе: 18CXY LM386 M-82

— это БРАК!

Бракованные микросхемы отправились в мусорное ведро. На их замену с местном инет-магазине были куплены LM386 от производителя UTC. Фото не приводится, т.к. отсутствие полноценного макро объектива не позволяет отснять надписи на корпусе.

3. Продолжение экспериментов. Вновь прибывшие микросхемы также были проверены на стенде: +1,9В на выводе 5, т.е. всё ОК. Сопротивление резистора ООС — около 15 кОм, что вполне соответствует документации.

Спектр выходного сигнала. Условия замера: — питание 4В от LiIon аккумулятора через защитный диод Шоттки 1N5819

— экранированный корпус — оба входа закорочены на землю через 1 кОм

Простой усилитель на микросхеме LM386

Если очень внимательно читать документацию на LM386, можно заметить, что входной сигнал подаётся на вывод 3 (неинвертирующий). Вывод 2 (инвертирующий вход), как правило, не используется.

Была собрана модель LM386 в симуляторе Multisim10. И проверены две схемы: — входной сигнал подаётся на вход 2 (инвертирующий)

Простой усилитель на микросхеме LM386

— входной сигнал подаётся на вход 3 (неинвертирующий)

Простой усилитель на микросхеме LM386

Можно заметить: Кг получился разный (0,28% и 0,44%). Было логично повторить замеры вживую.

Входной сигнал (10 мВ 1 кГц) — на вход 2 (инвертирующий):

Простой усилитель на микросхеме LM386

Входной сигнал (10 мВ 1 кГц) — на вход 3 (неинвертирующий):

Простой усилитель на микросхеме LM386

Выводы: — Кг по входам 2 и 3 примерно одинаковый, но при использовании входа 3 немного ниже — не всегда симуляторы дают адекватную оценку таких деликатных параметров, как Кг (THD)

4. Особенности питания LM386 от других источников.

Все замеры выше выполнены при использовании 4В источника (свежезаряженная LiIon аккумулятор, который при малых разрядных токах обеспечивает «чистое» питание 4,0..4,1В под нагрузкой). В цепи питания всегда присутствует защитный диод Шоттки 1N5819.

Падение напряжения на диоде около 0,2В никаким образом не влияет на работоспособность микросхемы.

Некоторые критики внимательные читатели могут заметить, что работоспособность LM386 гарантируется от 4В и выше. С этим никто не спорит.

Как обычно, хочется где-то съэкономить и\или упростить себе жизнь.

4.1. Питание от USB. Условия замера: — +5В подано через RC-фильтр (51 Ом и 47 мкФ) — использован только плюсовой провод от USB — входы закорочены на землю через резисторы 1 кОм

Простой усилитель на микросхеме LM386
На спектре появилась «расчёска». (

4.2. Питание от повербанка Условия замера: — +5В подано через RC-фильтр (51 Ом и 47 мкФ) — входы закорочены на землю через резисторы 1 кОм

Простой усилитель на микросхеме LM386
«Расчёска» также присутствует.

ВЫВОДЫ

: — покупать микросхемы необходимо у проверенных продавцов — использование LM386 предпочтительно от LiIon аккумулятора — в зависимости от задачи возможно использование входов 2 и 3 — Кг (THD) в пределах 0,1% при выходном напряжении 200 мВ (типичное значение чувствительности линейных входов звуковой аппаратуры и линейного входа ЗК)

Всем удачных разработок!

PS По незнанию в обзор были добавлены файлы .ovl По сути это текстовые файлы, которые создаёт и использует программа SpectraLab.

Объём этих файлов оказался настолько большим, что при попытке опубликовать обзор сайт выдал ошибку «Более 15000 символов». Поэтому пришлось удалить лишние строки кода из отчёта.

Для желающих скачать все исходные материалы данного обзора, ссылка на гуглодиск.

Регенеративный средневолновый приемник

Из технического описания LM386 следует, что его усиление остается больше единицы (10 дБ) на частотах, превышающих 1 МГц (Рисунок 3). По этой причине LM386 способен генерировать на средних частотах АМ диапазона (540 … 1600 кГц), что делает возможным использование микросхемы в схеме средневолнового регенеративного приемника АМ сигналов. Это значительно улучшает чувствительность и селективность приемника прямого усиления. Результат представлен на Рисунке 4.

Простой усилитель на микросхеме LM386
Рисунок 3. Эта зависимость усиления от частоты взята из
документации Texas Instruments на микросхему LM386.

Если исключить цепь регулировки положительной обратной связи, схема превратится в генератор Колпитца. В качестве двух параллельных контуру конденсаторов, необходимых для схемы Колпитца, используется внутренняя емкость вывода 3 микросхемы LM386 и последовательный с ней конденсатор 220 пФ между выводом 1 и землей. Коэффициент усиления звукового сигнала можно увеличить, включив дроссель последовательно с конденсатором 10 мкФ. Он может иметь индуктивность от 1 до 10 мГн. Чем больше будет индуктивность дросселя, тем больше будет его внутреннее сопротивление, что немного уменьшит максимальное усиление звука. Если при использовании небольшого дросселя усиление оказывается избыточным, последовательно с дросселем можно включить небольшой резистор сопротивлением от 10 до 100 Ом. Дроссель в комбинации с последовательным конденсатором шунтируют внутренние резисторы обратной связи, которые определяют усиление усилителя на звуковых частотах, но имеют высокий импеданс на радиочастотах, так что схема может быть использована в качестве высокочастотного генератора Колпитца (емкостной трехточки). Для управления коэффициентом усиления, изменяющего глубину положительной обратной связи генератора и позволяющего использовать его в качестве регенеративного приемника, к выводу 7 подключен переменный резистор 10 кОм, который уменьшает ток генерирующего транзистора на неинвертирующем выводе 3, что, в свою очередь, уменьшает усиление генератора.

Простой усилитель на микросхеме LM386
Рисунок 4. Эта схема показывает, как использовать LM386 в качестве
средневолнового регенеративного приемника.

Более высокие частоты и больше возможностей

Использовать большое усиление LM386 и его способность выполнять функцию детектора огибающей на высоких частотах можно с помощью того, что, по сути, является однотранзисторным умножителем добротности. В последней группе схем, показанных на Рисунке 6, к схеме генератора Колпитца добавлен один транзистор, который в совокупности с высоким усилением LM386 и способностью к детектированию превращает микросхему в высококачественный регенеративный приемник. В схеме с катушкой на ферритовом стержне он способен генерировать на частотах, превышающих 14 МГц, и обеспечивать громкий звук при приеме мощных коммерческих коротковолновых станций. На схеме показан PNP транзистор общего назначения типа 2N3906, но с таким же успехом в ней можно использовать 2N2907 и 2N4403.

Простой усилитель на микросхеме LM386
Рисунок 6. Коротковолновые регенеративные приемники на основе LM386, использующие большое
усиление микросхемы и способность детектирования огибающей радиочастотного сигнала.

На схемах 1, 2 и 3 входы LM386 подключены непосредственно к контуру, а сам LM386 используется как радиочастотный детектор огибающей. В схеме 4 с относительно большой емкостью конденсатора связи LM386 используется одновременно как аудиоусилитель и детектор огибающей, где оба сигнала оказываются на эмиттере входного транзистора. В схеме 5 емкость входного конденсатора связи меньше, а LM386 работает детектором огибающей, который только детектирует радиочастотный сигнал, поступающий с эмиттера входного транзистора. Схема 6 работает как детектор огибающей и не имеет входного конденсатора связи; оба дифференциальных входа LM386 соединены с эмиттером. Это защищает LM386 от насыщения входным постоянным напряжением (порядка 0.6 В) с эмиттера транзистора.

При использовании контура с катушкой из 8 витков провода, намотанного на 3-дюймовый ферритовый стержень, и стандартного конденсатора переменной емкости для средневолнового диапазона схема 6 обеспечивает интервал перестройки приблизительно от 3.5 до 10.5 МГц, и таким образом, покрывает оба любительских диапазона 80 и 40 метров. При регулировке глубины положительной обратной связи происходит небольшой сдвиг частоты, что весьма полезно при приеме сигналов SSB, поскольку управление обратной связью может использоваться для тонкой настройки.

Работа схемы усилителя звука LM386

Простой, но эффективный усилитель звука разработан с использованием ИС усилителя звука LM386. Работа схемы очень проста, так как вся работа выполняется самой микросхемой LM386.

Когда на схему подано питание и на вход подается соответствующий аудиовход, LM386 усиливает входной сигнал в 200 раз и приводит в действие выходной динамик.

Одной из основных проблем с усилителями звука, такими как LM386, является шум. Удивительно, но несмотря на то, что схема построена на макете, из динамика было очень мало шума.

Область применения

LM386 является одной из важных микросхем в аудио сегменте и применяется в портативных колонках и колонках ноутбука.

Схема усилителя звука LM386 может использоваться для записи голоса с микрофона, создания небольших динамиков с батарейным питанием, в FM-радиоустройствах и т. д.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: